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Feng Zhan, Wenwu Wang, Senior Member, IEEE, Qian Chen, Yina Guo, Senior Member, IEEE, Li-
dan He, and Lili Wang

Abstract—Biomedical image segmentation of organs, tissues
and lesions has gained increasing attention in clinical treatment
planning and navigation, which involves the exploration of two-
dimensional (2D) and three-dimensional (3D) contexts in the
biomedical image. Compared to 2D methods, 3D methods pay
more attention to inter-slice correlations, which offer additional
spatial information for image segmentation. An organ or tumor
has a 3D structure that can be observed from three directions.
Previous studies focus only on the vertical axis, limiting the
understanding of the relationship between a tumor and its
surrounding tissues. Important information can also be obtained
from sagittal and coronal axes. Therefore, spatial information of
organs and tumors can be obtained from three directions, i.e.
the sagittal, coronal and vertical axes, to understand better the
invasion depth of tumor and its relationship with the surrounding
tissues. Moreover, the edges of organs and tumors in biomedical
image may be blurred. To address these problems, we propose
a three-direction fusion volumetric segmentation (TFVS) model
for segmenting 3D biomedical images from three perspectives in
sagittal, coronal and transverse planes, respectively. We use the
dataset of the liver task provided by the Medical Segmentation
Decathlon challenge to train our model. The TFVS method
demonstrates a competitive performance on the 3D-IRCADB
dataset. In addition, the t-test and Wilcoxon signed-rank test are
also performed to show the statistical significance of the improve-
ment by the proposed method as compared with the baseline
methods. The proposed method is expected to be beneficial in
guiding and facilitating clinical diagnosis and treatment.
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I. INTRODUCTION

THE liver is an essential glandular organ for humans,
participating in digestion, metabolism, excretion, detox-

ification, and immunity. Liver cancer is one of the five most
frequently diagnosed cancers and the fourth major cause of
cancer death globally [1]. Over the past 20 years, biomedical
image analysis has been a core constituent of biomedical
diagnosis [2]. Biomedical image segmentation, such as liver
and tumor segmentation, is one of the most critical areas
in biomedical image analysis, which is a prerequisite for
quantitative analysis of a region of interest (ROI) [3], enabling
successful clinical diagnosis and treatment of the liver [4], [5].
The detection and delineation of liver and tumor are one of
the most important steps in current clinical practice supporting
diagnosis, tissue quantification, and treatment planning [6].
This is because the accurate semantic segmentation results
contain location, shape and volume of the ROI, and important
physiological or pathological information, which play a vital
role in clinical diagnosis, treatment, and prognosis, especially
in computer-aided diagnosis, image-guided interventions, ra-
diotherapy, and downstream applications such as radiomics
[7]. In addition, with the segmentation results, the effect of the
clinical treatment can be evaluated more accurately to improve
the survival rate of patients [6].

The meaningful knowledge can be obtained from biomedi-
cal image and clinical data by semantic segmentation, includ-
ing manual segmentation and machine segmentation [8], [9],
[10]. Manual segmentation is a very tedious task that relies
on hand-crafted features and is incapable of addressing the
automatic segmentation challenge. Therefore, machine seg-
mentation with minor or no human involvement is preferable.
Some improved algorithms based on convolutional neural
networks (CNNs) offer good segmentation performance [11],
such as U-Net [12], Framing U-Net [13], CAC-SPP [14], H-
DenseUNet [15], mU-Net [16], RA-UNet [17], KiU-Net [18],
Song et al. [19], Di et al. [20], LiTS-Net [21], HFRU-Net [22]
and nnU-Net [2].

However, existing 3D biomedical image segmentation meth-
ods often focus on spatial information over the vertical axis,
limiting the understanding of the relationship between organ,
tumor and their surrounding tissues. In addition, the spatial in-
formation in biomedical images mined from a single direction
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is not complete. In human anatomy, an organ or tumor can be
observed from three directions to acquire more information, as
shown in Fig. 1. There is an increasing demand on studying
how to effectively excavate suspicious tumors in the image,
find out the scope of the tumors, and finally show the results
to clinicians with visualization. Accordingly, it is crucial to
study effective three-direction biomedical image segmentation
methods.

(a) Transverse plane (b) Coronal plane (c) Sagittal plane

Fig. 1. Different tomographic meanings observed from different anatomical
planes.

The aim of this paper is to develop a method for three-
direction fusion based volumetric segmentation of a 3D
biomedical image, motivated by recent advances in 2D
multi-perspective segmentation [23], which utilized 2D views
(slices) of 3D computed tomography (CT) volume in organ-
attention networks. Nevertheless, spatial information could be
easily lost when analyzing 3D biomedical images from a 2D
perspective. Furthermore, efficient three-direction data fusion
is a practical challenge in 2D and 3D three-direction segmen-
tation problems. In order to address these difficulties, a three-
direction fusion volumetric segmentation (TFVS) method is
proposed, and our contributions are summarized as follows.

1) TFVS model. A new model of biomedical image seg-
mentation is proposed in order to exploit three-direction
spatial information and enhance segmentation results.

2) TFVS method. Based on the TFVS model, we inves-
tigate the various combinations and their performance
in predicting segmentation results for 3D biomedical
images.

a) Datasets. Inspired by 2D multi-perspective meth-
ods, new 3D three-direction datasets are con-
structed for this study, where the organ and tumor
spatial information are obtained from three direc-
tions of vertical, sagittal, and coronal axes. More
spatial information can be leveraged for image
segmentation by using 3D three-direction datasets
for training, validating and testing of the network.

b) Three-direction method. We embed sagittal and
coronal, and transverse planes to the encoder-
decoder structure to fully use three-directional fea-
tures. The overall performance can be improved
by combining spatial information from vertical,
sagittal, and coronal axes directions.

c) Fusion method. We propose a fusion method
for volumetric segmentation to address boundary
ambiguity and the invasion depth of tumors in
biomedical image segmentation. The prediction re-

sults are processed and analyzed using intersection
and union on the test data. By comparing the
prediction results, clinicians can gain comprehen-
sive insights into cancer and receive anatomical
information for further diagnosis and treatment.

The remainder of the paper is organized as follows. Sec-
tion II describes the background. Section III formulates the
mathematical model for the segmentation problem. Section
IV presents our proposed method for the problem of 3D
biomedical image segmentation. Section V discusses datasets,
baseline methods and performance metrics. Section VI shows
experimental results. Section VII concludes the paper and
draws potential future research directions.

II. BACKGROUND

In this section, we discuss the background work proposed
for multi-perspective biomedical image segmentation.

From ancient times to the present, medical diagnoses
and treatments have been inseparable from anatomy. The
widespread availability of biomedical imaging has stimulated
the development of biomedical imaging anatomy [24]. Most
biomedical data used in clinical practice are stereo image data,
such as CT images [25], magnetic resonance imaging (MRI)
[26] and positron emission tomography-computed tomography
images [27]. The use of 3D biomedical images has gained
significant interest as they offer improved assistance to clin-
icians in understanding the internal structure and functioning
of a patient’s body, as compared to 2D biomedical images.
Recently, inspired by the massive success of deep learning,
several researchers considered the application of deep learning
for organ and tumor segmentation [28], [29]. The application
of deep learning methods to multi-perspective segmentation of
organs and tumors can be classified approximately into several
categories, such as multi-planar data augmentation, 2D multi-
perspective segmentation, 2.5D multi-perspective segmenta-
tion, and 3D multi-perspective segmentation methods.

Multi-planar data augmentation methods. Deep learning
is a data-driven approach that utilizes input data to perform
various tasks. To improve biomedical image segmentation
when working with a small sample size, multi-planar data
augmentation methods are employed [30]. The effectiveness
of this approach is demonstrated in a study by Perslev et
al. [31], who used multi-planar data augmentation to enhance
segmentation accuracy in a 2D architecture.

2D multi-perspective segmentation methods. Different
segmentation results may be obtained when the structures
are viewed from different directions [23]. However, 2D seg-
mentation methods lack contextual and spatial information,
such as inter-slice correlations within 3D biomedical images.
To overcome this limitation, some researchers have proposed
2D multi-perspective biomedical image segmentation methods.
For example, Wang et al. [23] utilized 2D views (slices)
of CT volume in organ-attention networks. Liu et al. [32]
substituted multi-direction fusion modules for convolutional
blocks, which is limited in obtaining deep multi-direction
integration in the prediction process. Xia et al. [33] employed
n× n× 1 convolutional kernels to derive diversified features
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in different sub-networks. Sundaresan et al. [34] proposed a
triplanar ensemble network consisting of three 2D networks.

2.5D multi-perspective segmentation methods. To com-
bine the 3D information of multi-perspective 2D models,
2.5D methods achieve an effective balance between model
complexity and segmentation accuracy [35], [36].

3D multi-perspective segmentation methods. To address
the limitations of 2D segmentation methods in using spatial
information, 3D methods have been developed. These methods
are more effective in identifying the relationship between
organs, tumors, and surrounding tissue [37]. However, current
3D methods are limited to spatial information over the vertical
axis, resulting in suboptimal segmentation performance. By
improving the flatness of the interpolated 3D medical vol-
umes in all three directions (i.e. axial, sagittal, and coronal),
segmentation completeness and accuracy can be significantly
enhanced [38]. In addition, the segmentation performance can
be improved through larger patch sizes during training, which
increases the ability of the network to exploit contextual
information [2]. However, the memory constraints of current
GPUs mean that some 3D methods would have to be trained
using small patch sizes [39].

To address such limitations, we build the TFVS model
that improves organ and tumor segmentation accuracy by
capturing spatial information from all three directions of a
3D biomedical image, using a fusion volumetric segmentation
method, and leveraging 3D three-direction datasets.

III. MATHEMATICAL MODEL

This section mainly focuses on the problems in segment-
ing organs and tumors from a 3D biomedical image, such
as the lack of three-direction spatial information, boundary
ambiguity, and the invasion depth of tumors. In this section,
a mathematical model is presented for the above problems.

We consider the task of TFVS for 3D biomedical image.
Given the dataset D = {D1,D2}, which is composed of
training data D1 and test data D2, where in the training data
D1 = {Dtra,Dval}, Dtra is used for training, and Dval is used
for validation. Each labeled data pair is (Vk,Gk)

N
k=1 ∈ D,

Vk ∈ RW×H×D, Gk ∈ RW×H×D, where Vk is the k-th
volume data and Gk is the associated ground truth.

A 3D biomedical image is defined as follows,

VX =

W⋃
j=1

AXj ,VY =

H⋃
j=1

AYj ,VZ =

D⋃
j=1

AZj , (1)

where W, H and D are the width, height and depth, re-
spectively. VX ∈ RH×D×W , VY ∈ RW×D×H and VZ ∈
RW×H×D are used to represent 3D image from three per-
spectives: coronal, sagittal and vertical axes. AXj

∈ RH×D,
AYj

∈ RW×D and AZj
∈ RW×H are the j-th 2D image in

the sagittal, coronal and transverse planes, respectively.
Biomedical image segmentation aims to find contours sep-

arating organs from tumors. The segmentation problem of
3D medical images can be treated as the problem of solving
function mapping, as follows,

Ω3DX
= f(VX),Ω3DY

= f(VY ),Ω3DZ
= f(VZ), (2)

where Ω3DX
, Ω3DY

, and Ω3DZ
are used to represent the

results of 3D biomedical image segmentation. The results
of 3D biomedical image Ω3DX

(Ω3DY
, Ω3DZ

) are di-
vided into n distinct and disjoint non-empty sub-regions
Ω3DX0

,Ω3DX1
, ...,Ω3DXn−1

((Ω3DY0
,Ω3DY1

, ...,Ω3DYn−1
),

(Ω3DZ0
,Ω3DZ1

, ...,Ω3DZn−1
)) by some 3D biomedical im-

age segmentation methods. The relation symbol H(Ω3DXi
)

(H(Ω3DYi
), H(Ω3DZi

)) represents the relevant attributes of
set elements, H(Ω3DXi

) = True (H(Ω3DYi
) = True,

H(Ω3DZi
) = True) denotes that each element in the

set Ω3DXi
(Ω3DYi

, Ω3DZi
) has the same attributes, and

H(Ω3DXi
) = False (H(Ω3DYi

) = False, H(Ω3DZi
) =

False) denotes that each element in the set Ω3DXi
(Ω3DYi

,
Ω3DZi

) does not have the same attributes.

Ω3DX
=

n−1⋃
i

Ω3DXi
,Ω3DXi

∩Ω3DXj
= ∅,∀i, j, i 6= j, (3)

Ω3DY
=

n−1⋃
i

Ω3DYi
,Ω3DYi

∩Ω3DYj
= ∅,∀i, j, i 6= j (4)

and

Ω3DZ
=

n−1⋃
i

Ω3DZi
,Ω3DZi

∩Ω3DZj
= ∅,∀i, j, i 6= j, (5)

that is, the subsets obtained from the segmentation should
cover the whole segmentation result and not overlap with each
other. In our work, the value of n in Eq. (3), (4) and (5) is taken
as 3, where Ω3DX0

(Ω3DY0
, Ω3DZ0

) is background, Ω3DX1

(Ω3DY1
, Ω3DZ1

) is organ, and Ω3DX2
(Ω3DY2

, Ω3DZ2
) is

tumor.
A deep neural network has been used recently to achieve

function approximation in biomedical image segmentation.
There is a correlation between slices in 3D biomedical im-
ages. By transforming 2D convolution in a CNNs model
into 3D convolution, 3D biomedical image segmentation
can be achieved. Implementing the 3D network is memory-
demanding, making it infeasible to take the whole 3D voxel
as input. To address this issue, we can divide it into a number
of 3D patches as input. However, cropping may reduce the
maximum receptive field of the network, resulting in missing
global and spatial information. These may lead to inaccu-
rate segmentation results. Therefore, further improvement is
required.

Different structures and texture patterns from various view-
ing directions often generate nonidentical segments [23]. We
can utilize logical operations in Boolean algebra, including
logic AND, logic OR and logic XOR, to determine the
correlation of three segmentation results at the exact location
for addressing problems with insufficient emphasis and border
ambiguity. Formally, logic AND is the logical intersection
of three prediction results from the pixel-level perspective,
combined into a prediction result,

Ωand
3D1

= Ω3DX1
∩Ω3DY1

∩Ω3DZ1
(6)

and
Ωand

3D2
= Ω3DX2

∩Ω3DY2
∩Ω3DZ2

, (7)
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Fig. 2. The overall framework of the proposed TFVS algorithm for liver and liver tumor segmentation model.

where Ωand
3D1

and Ωand
3D2

are the results of logic AND on organ
and tumor, and ∩ is the element-wise logic AND operation.

Logic OR is the logical union of the three predicted seg-
mentation results from the pixel-level perspective, combined
into a prediction result,

Ωor
3D1

= Ω3DX1
∪Ω3DY1

∪Ω3DZ1
(8)

and
Ωor

3D2
= Ω3DX2

∪Ω3DY2
∪Ω3DZ2

, (9)

where Ωor
3D1

and Ωor
3D2

are the consequences of logic OR
on organ and tumor, and ∪ is the element-wise logic OR
operation.

Logic XOR is the logical exclusive-or of three predicted
segmentation results from the pixel-level perspective, com-
bined into a predicted result,

Ωxor
3D1

= Ω3DX1
⊕Ω3DY1

⊕Ω3DZ1
(10)

and
Ωxor

3D2
= Ω3DX2

⊕Ω3DY2
⊕Ω3DZ2

, (11)

where Ωxor
3D1

and Ωxor
3D2

are the consequences of logic XOR
on the organ and tumor, and ⊕ is the element-wise logic XOR
operation.

IV. THREE-DIRECTION FUSION VOLUMETRIC
SEGMENTATION METHOD

In this section, we propose a three-direction method by
changing the orientation of the network input data, and ob-
taining intra-slice and inter-slice from sagittal, coronal and
transverse planes, followed by jointly optimizing the hybrid
features for precise liver and tumor segmentation. The TFVS

model is presented to improve medical image segmentation by
exploiting directional information in 3D images. The overall
framework of the proposed TFVS algorithm for liver and
tumor segmentation model is shown in Fig. 2, which consists
of three steps. The first step is to generate 3D three-direction
datasets DX , DY and DZ . The sagittal plane

⋃W
j=1 AXj

,
coronal plane

⋃H
j=1 AYj , and transverse plane

⋃D
j=1 AZj are

taken as the first plane. The second step is to train the models
on the 3D three-direction datasets. The pre-trained models
are used to predict segmentation results Ω3DXi

, Ω3DYi
and

Ω3DZi
(i = 0, 1, 2), respectively. The third step is to highlight

liver and tumor Ωand
3Di

, Ωor
3Di

and Ωxor
3Di

(i = 1, 2) through the
intersection and union of the segmentation result. A detailed
description of each step is given below.

A. Generation of 3D three-direction datasets

In engineering and biomedical imaging, 3D objects are
often observed from multiple perspectives, which provide
visual information from various segmentation surfaces. Spatial
information between slices in 3D biomedical images can be
obtained through 3D modeling, which enhances the perfor-
mance of image segmentation [17], [18]. To further improve
this process, we propose training three different models from
three perspectives: vertical, sagittal, and coronal axes. We can
train the model with images from each perspective by utilizing
the same network structure and adjusting the network input.
These models can then be used for 3D biomedical image
prediction from the corresponding viewpoint.

Human anatomy contains three mutually perpendicular axes:
vertical, sagittal, and coronal. The human body, organs, tis-
sues, lesions, and tumors can be formed into different slices
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according to these axes, each providing unique cross-sectional
information. For example, the liver can be observed in the
vertical, sagittal, and coronal planes, allowing for examination
of its relationship with other organs such as the kidney, heart,
and lungs in each respective direction. Biomedical images such
as CT and MRI allow us to examine the human body as a 3D
rigid object, which can be rotationally adjusted using 3D rigid
rotation methods. To generate 3D three-direction datasets, we
follow the steps outlined in this paper.

1) Transverse plane angle dataset (dataset DZ). The con-
nection between the upper and lower slices is linked
according to the transverse plane. The given dataset is
denoted as DZ .

2) Sagittal plane angle dataset (dataset DX ). The NIFTI
format data of dataset DZ are converted to NumPy
arrays using the Nibabel Python library. The NumPy
arrays of the 3D image data are rotated by 90 degrees
along Y-axis, as detailed in Eq. (12), with β set to 90
degrees. Finally, the modified data is saved in NIFTI
format to create dataset DX , which provides spatial
information from the data.

x′

y′

z′

1

 =


cosβ 0 −sinβ 0
0 1 0 0

sinβ 0 cosβ 0
0 0 0 1



x
y
z
1

 (12)

3) Coronal plane angle dataset (dataset DY ). The dataset
DY is obtained by rotating each 3D image data in the
dataset DZ by 90 degrees along the X-axis. The above
implementation can be defined as Eq. (13). The value
of α in Eq. (13) is taken as 90 degrees. The generated
dataset DY is intended to facilitate access to the spatial
information of the data.

x′

y′

z′

1

 =


1 0 0 0
0 cosα sinα 0
0 −sinα cosα 0
0 0 0 1



x
y
z
1

 (13)

With the above calculation, we can get the planar schematic
diagram of datasets DZ , DY , DX shown in Fig. 3.

(a) (b) (c)

Fig. 3. Planar schematic diagrams (a, b, c) of datasets DZ , DY and DX

observed from the transverse plane.

B. Segmentation network architecture and training details

After the previous section, we obtain the required data
and divide the training data into three sets. We develop a
segmentation network architecture for this assignment. The
segmentation network architecture is depicted in Fig. 4. The
encoder sub-network on the left comprises five convolutional

layers, while the decoder sub-network on the right contains
five deconvolution layers. Each layer consists of several mod-
ules. The encoder path of the segmentation network uses
residual learning to improve the network performance [40].
Residual learning can overcome the potential degradation
problem associated with a network with increased depth. We
employ stacked residual units to build deeper convolutional
encoders. Also, we remove the second LeakyReLU block
from the residual unit and add a convolutional module after
the residual unit, which is used for feature aggregation. This
convolution module shares the same parameters as the convo-
lution module inside the residual unit. This design can reduce
computational complexity. The max-pooling layer is replaced
by a strided convolution layer with step size 2 to enhance the
network accuracy and reduce the model size. By deepening
the layers, information can be transmitted hierarchically, and
the problems to be learned at each layer are decomposed into
simpler problems that are easier to solve. After completing the
decoder sub-network, a 1×1×1 convolutional block is utilized
to convert the feature map generated by the segmentation
network to the corresponding result.

Our segmentation network is built on PyTorch 1.10.0 frame-
work with CUDA 11.4 and cuDNN 8.2.1.32. The loss function
used in the proposed method is the product of cross entropy
(CE) loss and Dice loss [41]. The CE loss is skewed toward
the detection of larger target areas and seeks to improve
segmentation at the image level. However, the inclusion of
a Dice component in the loss function facilitates the detection
of small tumours and decreases false negatives, especially in
regions with a significant class imbalance. The loss function
is

L = λ1LCE + λ2LDice (14)

with

LCE = − 1

N

C∑
c=1

N∑
i=1

gci log s
c
i , (15)

LDice = 1−
2
∑C

c=1

∑N
i=1 g

c
i s

c
i∑C

c=1

∑N
i=1 g

c
i +

∑C
c=1

∑N
i=1 s

c
i

, (16)

where λ1 and λ2 are the hyper-parameters weighting the
contributions of the CE loss and Dice loss, respectively, set
empirically as λ1 = 0.5 and λ2 = 0.5 in our experiments.
The term gci is the ground truth binary indicator representing
the class label c of voxel i, while sci is the corresponding
predicted segmentation probability.

With a larger patch, more contextual information can be
exploited by the network. However, due to the memory con-
straints of the available GPUs, we choose the batch size to be
2, which considers a tradeoff between the memory requirment
and the segmentation performance. In both the convolution
and deconvolution layers, we use 3D convolution kernels in
the network. The network parameters are optimized by the
stochastic gradient descent algorithm. We chose to run a fixed
number of epochs, i.e. 1000, during training, where each epoch
includes 250 training iterations. The initial learning rate is set
at 0.005. As illustrated in Fig. 4, kernels of size 1 × 1 × 1,
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Fig. 4. The network architecture for liver and liver tumor segmentation. Several key network blocks from different parts are illustrated at the bottom.

3×3×3 and 3×1×3 are used in the convolution layers, while
the kernel of size 2×2×2 is used in the deconvolution layers.
When all the models have been trained, five folds are combined
for obtaining the final predictions. In other words, the best
model is chosen according to cross-validation performance.

The 3D three-direction datasets DZ , DY and DX are
used to evaluate the proposed TFVS model. Based on the
segmentation network, the training is performed separately,
and three different pre-trained models from three perspectives:
vertical, sagittal and coronal axes are obtained, respectively.
On the training set, the experiment is conducted in the way
of five folds cross validation, with four folds as the training
set and the remaining fold as the validation set. Moreover,
the three pre-trained models are used to segment the test set
from three perspectives. Ω1

3D and Ω2
3D are obtained by fusion

segmentation, which addresses problems with insufficient em-
phasis and boundary ambiguity.

The facilities used to carry out the experiments include
AMD Ryzen 7 3700X 8-Core Processor, NVIDIA Geforce
RTX 3080 Graphics Card, 112 GB memory, and Ubuntu 20.04
LTS 64-bit Operating System. The network architecture is
constructed using the well-known deep learning framework,
PyTorch [42]. Following the work of Wang et al. [23], we train
the network for each direction. We follow the recommendation
to train the backbone network on the 3D unidirectional dataset
for experimental comparison.

C. Fusion method of volumetric segmentation

In multi-perspective biomedical image segmentation, it is
necessary to consider how to merge multiple objects. Several

fusion methods have been proposed for improving segmen-
tation accuracy [32], [43], [44]. They mainly discuss fusion
methods in terms of network construction. Although existing
algorithms have made great improvements on biomedical im-
age segmentation, they rarely consider it from the perspective
of data processing. Moreover, image edge is often blurred in
biomedical images [45].

In this paper, liver and its tumor are predicted from three
perspectives: vertical, sagittal and coronal axes. Different
perspectives may lead to different results. The three-direction
perspectives provide complementary information, which po-
tentially can improve the segmentation performance. There-
fore, attention is paid to accuracy and comprehensiveness
in the fusion process. Inspired by the fusion network [45],
we can address the problems of insufficient emphasis and
boundary ambiguity through the intersection and union of the
segmentation results, as given in Eq. (6), (7), (8), (9), (10)
and (11). The fusion method for volumetric segmentation is
summarized in Algorithm 1.

Logic AND is an operation of taking the intersection
among the segmentation results, which can further improve
the prediction confidence and emphasize the core position
of the object by eliminating the intra-class inconsistency.
Logic OR is an operation of merging the prediction results
of medical image segmentation, in order to improve the recall
and marginal details of organs and tumors. In the subsequent
experiments, we adopt logic OR to obtain better segmentation
results. Logic XOR is an XOR operation applied on the
segmentation results from the three perspectives, to improve
the exposure of marginal details in the concerned object and
highlight the regional boundary of the three prediction results.
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Algorithm 1 The algorithm of fusion for volumetric segmen-
tation
Input: The input image VX , VY and VZ are given in Eq.

(2).
Output: Enhanced results of Ωand

3Di
, Ωor

3Di
and Ωxor

3Di
, i=1,2.

1. The input image to array conversion.
Array3DX

, Array3DY
and Array3DZ

.
2. Transformation of array.
The prediction results are mapped into the original image
direction. Array

′

3DX
and Array

′

3DY
are given in Eq. (13)

and (15), where the value of α and β are taken as 270
degrees.
3. Data fusion.
Array

′

3DX
∧Array

′

3DY
∧Array3DZ

,
Array

′

3DX
∨Array

′

3DY
∨Array3DZ

,
Array

′

3DX
⊕Array

′

3DY
⊕Array3DZ

.
4. Array to enhanced results conversion.
Ωand

3Di
, Ωor

3Di
and Ωxor

3Di
, i=1, 2.

It provides more details of the regional border, thus enabling
better observation of an organ and tumor. As a result, clinicians
can more quickly understand the relationship between the
organ and tumor. Therefore, it is possible to merge different
spatial information using logic AND, logic OR and logic XOR,
through the intersection and union of the three segmentation
results. This can facilitate the clinicians in observing the
patterns from the data, highlighting organs and tumors, as well
as the details of the regional border.

V. EXPERIMENTAL SETUP

In this section, we discuss the design for performing 3D
image segmentation experiments, including datasets, baseline
methods, and performance metrics.

A. Experimental datasets

We evaluate the proposed approach for liver and tumor
segmentation using public datasets, including the Liver dataset
provided by Medical Segmentation Decathlon (MSD) [46] and
the 3D Image Reconstruction for Comparison of Algorithm
Database (3Dircadb) provided by IRCAD [47]. We take these
two datasets and create the training, validation and testing sets
for our experiments. Our segmentation target contains liver and
tumor.

1) Liver dataset: Liver dataset is one of the MSD challenge
datasets. We use the training data of Liver dataset to train the
proposed model. This dataset has 201 contrast-enhanced 3D
abdominal CT scans, with 131 scans for training with ground-
truth labels, and 70 scans for testing. The challenge is to
address the label imbalance issue with a large liver and tiny
tumor target. Several works that are based on U-Net performed
well for this challenge [5].

2) 3Dircadb dataset: To evaluate the generalization capa-
bility of the TFVS model, we utilize a training set comprising
111 cases from the Liver dataset. This training set excludes
data from the 3Dircadb dataset, and the model is subsequently
tested on the 3Dircadb dataset. The format of the 3Dircadb

dataset does not follow the data structure of the Liver dataset,
which should be converted for the following examination
process. Processing for data formation is implemented using
Python (3.6 and 3.8, Python Software Foundation).

The images in the Liver dataset and the 3Dircadb dataset
are in 512 × 512 pixels. The number of CT scan slices
can vary from a few dozen to around one thousand slices.
Visualizations are performed using ITK-SNAP version 3.6 (the
interactive image segmentation software, www.itksnap.org)
[48]. An example for the visualization of an image from the
Liver dataset is shown in Fig. 5.

(a) Original Image (b) Ground Truth (c)3D Rendering

Fig. 5. An image example from the Liver dataset. The ground truth of the
original image (a) is shown in 2D projected onto the raw data (b) and in 3D
together with a volume rendering of the raw data (c). The red regions indicate
liver, while the green ones indicate tumor.

For the liver and tumor segmentation task, we utilize data
pre-processing to simplify the complexity of calculation. The
intensity values of CT window level and window width are
truncated to the range of [-200, +250] Hounsfield units to
eliminate the irrelevant information [49]. Only those slices
containing liver need to be extracted, while the remaining
slices are ignored. Generating the input data based on data
cropping and sampling instead of the entire CT volume
improves the computational efficiency in 3D biomedical image
segmentation, as it reduces the memory consumption and
computational resource during the training process. To crop
the original CT scans to the liver region, we adjust the 2D
images of the transverse plane size to 256× 256. The median
size in voxels is [256, 256, 362], and median spacing is [1.54,
1.54, 0.5] after data pre-processing.

B. Baseline methods
We compare the TFVS method (trained on the 3D three-

direction datasets DZ , DY and DX ) with the state-of-the-art
algorithms: U-Net (trained on the dataset D for the best model)
[12], Framing U-Net [13], CAC-SPP [14], H-DenseUNet [15],
mU-Net [16], Song et al. [19], Di et al. [20], LiTS-Net [21],
HFRU-Net [22] and nnU-Net (trained on the dataset D for the
best model) [2].

In order to assess the generalization ability of the TFVS
method, we directly apply the model trained on the Liver
dataset to the 3Dircadb dataset. To further evaluate the per-
formance of our proposed model and algorithm, we compare
it with other published methods. The comparison is restricted
to the methods with available references. The prediction results
of Framing U-Net, CAC-SPP, H-DenseUNet, mU-Net, Song et
al., Di et al., LiTS-Net and HFRU-Net are directly taken from
the original papers, while the remaining baseline methods are
trained from scratch with the training data (i.e., dataset D, 3D
three-direction datasets DX , DY , DZ).
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C. Performance metrics

To evaluate the TFVS method in segmenting liver and
tumor, we employ the Dice, Precision, Recall and Jaccard
scores, as in [50]. These four metrics are calculated based on
the true positive (TP), false positive (FP) and false negative
(FN), respectively, as follows,

Dice =
2TP

2TP + FP + FN
× 100%, (17)

Precision =
TP

TP + FP
× 100%, (18)

Recall =
TP

TP + FN
× 100%, (19)

Jaccard =
TP

TP + FP + FN
× 100%, (20)

where TP is the number of pixels that are identified as
target objects and correspond with the ground truth, FP is
the number of pixels that are identified as target objects
but belong to background, and FN is the number of pixels
that are identified as background but not consistent with the
ground truth. Dice evaluates the overlap between the predicted
and ground truth segments. Precision score reflects the pro-
portion of true positive samples among the algorithmically
identified positive cases. Recall score is the correct prediction
rate after biomedical image segmentation. Jaccard measures
the similarity between the prediction and the ground truth.
Higher Dice, precision, recall and Jaccard scores indicate
better performance. The t-test and Wilcoxon signed-rank test
are also performed to evaluate the statistical significance of
the performance difference between the proposed method and
the baseline methods.

VI. RESULTS

We present quantitative and qualitative results of our
method, comparing it to the state-of-the-art methods. Then,
we perform some ablation studies by conducting experiments
in various directions. Moreover, we discuss the generalization
capability of our method and present a comparison on the
3Dircadb dataset.

A. Overall performance

The correctness of the results obtained by a segmentation
method is a critical evaluation index. We present a quantitative
comparison using various evaluation metrics for liver and
tumor segmentation. Our method’s performance is assessed
using CT volumes for liver and tumor segmentation from the
3Dircadb dataset, as shown in Table I. The results show that
liver segmentation results of the proposed TFVS method on
the 3Dircadb dataset in mean values of the Dice is 96.70% that
is 5.25%, 2.65%, 2.38%, 1.59%, 0.69%, 0.20%, 0.05% and
0.23% improved than the U-Net, Framing U-Net, CAC-SPP,
H-DenseUNet, mU-Net, Song et al. [19], nnU-Net and LiTS-
Net, respectively. Our proposed TFVS method has better per-
formance for liver tumor segmentation in mean values of Dice
than the U-Net, Framing U-Net, CAC-SPP, H-DenseUNet, and

mU-Net algorithms on the 3Dircadb dataset. It is 36.70%,
34.47%, 18.58%, 16.13%, 14.46%, 13.8%, 11.6%, 10.63%,
8.06% and 4.70% improved than the U-Net, Framing U-
Net, CAC-SPP, H-DenseUNet, mU-Net, Song et al., Di et
al., nnU-Net, LiTS-Net and HFRU-Net, respectively. Table
I presents the prediction results of Framing U-Net, CAC-
SPP, H-DenseUNet, mU-Net, Song et al., Di et al., LiTS-
Net, and HFRU-Net, as reported in their respective papers.
Statistical significance tests using t-test are also performed to
show the significance of the performance improvement with
our proposed TFVS algorithm as compared with the baseline
methods. From the results, we can observe the statistically
significant differences between our method and the baseline
methods for segmenting liver tumors.

TABLE I
THE PERFORMANCE (DICE, %) OF OUR TFVS METHOD AS COMPARED
WITH STATE-OF-THE-ART METHODS ON THE 3DIRCADB DATASET. ALL

VALUES ARE REPORTED AS MEAN ± STANDARD DEVIATION. BEST
SCORES ARE MARKED IN BOLD.

Algorithm
Dice (%)

Liver Liver tumor

U-Net [12] 91.45±4.05* 45.90±31.09*

Framing U-Net [13] 94.05±1.20* 48.13±18.44*

CAC-SPP [14] 94.32±1.13* 64.02±7.18*

H-DenseUNet [15] 95.11±1.04* 66.47±6.54*

mU-Net [16] 96.01±1.08 68.14±6.40*

Song et al. [19] 96.5 68.8*

Di et al. [20] - 71±7*

nnU-Net [2] 96.65±1.43 71.97±24.94*

LiTS-Net [21] 96.47±1.13 74.54±6.21*

HFRU-Net [22] 97.3* 77.9*

TFVS 96.70±1.15 82.60±7.96

* indicates that the results are statistically dif-
ferent from TFVS (t-tests, p < 0.05).

Table II, Fig. 6 and Fig. 7 show more detailed comparison
results of U-Net, nnU-Net and TFVS. Our proposed TFVS
algorithm achieves higher scores than U-Net [12] and nnU-
Net [2] on the 3Dircadb dataset. Both nnU-Net and TFVS
outperform U-Net in liver segmentation, and TFVS performs
better than the others in segmenting liver tumors. The statis-
tical analysis using the Wilcoxon signed-rank test shows that
TFVS is most effective at segmenting liver tumors.

For further qualitative comparison, the liver and tumor
segmentation outcomes of various methods are illustrated in
Fig. 8. From the qualitative evaluation of the three cases, we
can observe that there is no apparent difference among the
three methods when segmenting images with relatively large
lesions. Nevertheless, when the lesion is relatively small, the
segmentation result of TFVS is better.

When ground truth cannot be obtained, we can use logic
XOR. Without obtaining the ground truth of liver and tumor,
the segmentation outcomes of liver and tumor obtained by
predicting transverse, sagittal and coronal planes are processed
by anisotropy. The positional relationship and the approximate
proportion between liver and tumor can be more clearly
obtained from the 3D perspective. Absolute difference maps
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TABLE II
PERFORMANCE OF LIVER AND LIVER TUMOR SEGMENTATION ON THE 3DIRCADB DATASET. ALL VALUES ARE REPORTED AS MEAN ± STANDARD

DEVIATION. BEST SCORES ARE MARKED IN BOLD.

Algorithm
Metrics of liver segmentation Metrics of liver tumor segmentation

Dice (%) Precision (%) Recall (%) Jaccard (%) Dice (%) Precision (%) Recall (%) Jaccard (%)

U-Net [12] 91.45±4.05* 89.41±5.63* 94.13±6.59* 84.49±6.67* 45.90±31.09* 69.09±34.40* 43.91±29.65* 34.81±26.84*

nnU-Net [2] 96.65±1.43 96.13±2.57 97.23±1.18 93.56±2.60 71.97±24.94* 83.30±30.98* 66.89±22.69* 60.51±24.08*

TFVS 96.70±1.15 95.97±2.16 97.37±1.23 93.55±2.40 82.60±7.96 93.74±9.78 74.90±11.07 71.08±11.38

* indicates that the results are statistically different from TFVS (Wilcoxon signed-rank tests, p < 0.05).
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Fig. 6. Performance evaluations of the liver segmentation results (for the 3Dircadb dataset). As in typical box plots, the box represents the first quartile,
median and the third quartile from the lower border, middle and the upper boarder, respectively, and the lower and the upper whiskers show the minimum
and the maximum values. (a) Dice, (b) Precision, (c) Recall, (d) Jaccard.
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Fig. 7. Performance evaluations of the liver tumor segmentation results (for the 3Dircadb dataset). As in typical box plots, the box represents the first quartile,
median and the third quartile from the lower border, middle and the upper boarder, respectively, and the lower and the upper whiskers show the minimum
and the maximum values. (a) Dice, (b) Precision, (c) Recall, (d) Jaccard.
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Fig. 8. The visual comparison of liver and tumor segmentation results for the 3Dircadb dataset. The first 5 columns show the 2D results of 3 validation
volumes, and the last 4 columns are the corresponding 3D visualization. (a) Original slices (b, f) 2D and 3D ground truth (c, g) U-Net (d, h) nnU-Net (e, i)
TFVS. The red regions denote the liver, while the green ones denote tumors.
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(b) (c) (d) (e)(a) (f) (g)

Fig. 9. Absolute difference maps between segmentation results Ω3DZ
, Ω3DY

and Ω3DX
. The first 5 columns show the 2D results of 3 validation

volumes, and the last 2 columns are the corresponding 3D visualization. (a) Original slice, (b) segmentation result Ω3DZ
, (c) segmentation result Ω3DY

, (d)
segmentation result Ω3DX

, (e, g) 2D and 3D absolute difference map between (b), (c) and (d), (f) 3D prediction result. The red regions denote liver, while
the green ones denote tumor.

TABLE III
QUANTITATIVE SCORES OF THE LIVER AND TUMOR SEGMENTATION RESULTS (TRAINING DATA: DZ , DY AND DX . TEST DATA: 3DIRCADB DATASET).

ALL VALUES ARE REPORTED AS MEAN ± STANDARD DEVIATION.

Algorithm Training Dataset
Metrics of liver segmentation Metrics of liver tumor segmentation

Dice (%) Precision (%) Recall (%) Jaccard (%) Dice (%) Precision (%) Recall (%) Jaccard (%)

nnU-Net
DZ 96.42±1.60 95.88±2.54 97.26±1.28 93.49±2.66 72.94±25.73 82.92±30.60 68.04±23.14 62.04±24.93
DY 96.51±1.44 95.55±2.55* 97.34±1.23 93.30±2.63 72.67±24.46 83.08±30.52 67.81±20.55 61.30±23.97
DX 96.45±1.64 95.52±2.37* 97.41±1.18* 93.40±2.61 73.04±24.04 82.97±28.56 69.13±23.14 62.47±22.22

nnU-Net
(ResNet)

DZ 96.54±1.55 95.81±2.69 97.33±1.18 93.36±2.81 70.37±25.46 84.71±31.46 64.47±23.10 58.69±24.53
DY 96.56±1.46 95.84±2.54 97.33±1.12 93.39±2.65 74.17±21.36* 89.43±25.26 64.19±22.25 62.62±20.35
DX 96.63±1.50 96.35±2.52* 96.97±1.31* 93.44±2.73 74.56±20.92* 90.82±6.68 64.61±22.07 65.13±20.18*

TFVS
DZ 96.59±1.46 95.96±2.63 96.97±1.34 93.45±2.65 80.48±7.22 97.36±3.04 69.36±11.18 67.92±10.54
DY 96.61±1.36 95.92±2.25 97.08±1.26 93.47±2.49 80.73±10.76* 93.81±11.76* 71.72±12.93* 68.86±13.94*

DX 96.66±1.37* 95.96±2.30 96.93±1.30 93.46±2.87 80.75±9.02* 93.52±2.41* 68.88±15.22 67.35±14.26

* indicates that the results on datasets DY and DX are statistically different on the dataset DZ (Wilcoxon signed-rank tests, p < 0.05).

between segmentation Ω3DZ
, Ω3DX

and Ω3DY
are illustrated

in Fig. 9.

B. Ablation studies

We conduct two ablation studies to show that our proposed
TFVS method has a better ability than nnU-Net for the liver
and tumor segmentation task. The implementation of the
residual network on nnU-Net is denoted as nnU-Net(ResNet).

We conduct the first ablation experiment in which nnU-
Net, nnU-Net(ResNet) and TFVS are trained on the 3D three-
direction datasets DZ , DY and DX , respectively. Then the
3Dircadb dataset is segmented with these pre-trained models.
Table III shows that the models pre-trained with the 3D three-
direction datasets provide different results. The segmentation
results by the models pre-trained on datasets DY and DX are
statistically different from those obtained on the dataset DZ .

Our second ablation experiment is about the fusion method
for volumetric segmentation. We improve the performance
of nnU-Net and nnU-Net(ResNet) predictions by combining
the fusion method for volumetric segmentation as a post-
processing technique. As presented in Table IV, the fusion

method significantly enhances the overall performance through
incorporating spatial information from three directions. Based
on the statistical significance tests, we find that the perfor-
mance metrics (e.g., Precision and Recall of liver segmenta-
tion, Dice, Recall, and Jaccard of liver tumor segmentation)
achieved by the nnU-Net method in Table IV are significantly
different from the nnU-Net method in Table II.

VII. CONCLUSION

A new method has been presented for the problem of liver
and tumor segmentation. Our contributions to this challenging
problem are as follows:

Model. We have presented the TFVS model for 3D biomed-
ical image segmentation, aiming to address the issues related
to single spatial information, boundary ambiguity, and the
invasion depth of tumors.

Method. We have proposed the three-direction fusion volu-
metric segmentation (TFVS) method, which incorporates deep
learning techniques and logical operations in Boolean algebra
to enhance the accuracy and effectiveness of the segmentation
process. The TFVS method considers the vertical, sagittal,
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TABLE IV
RESULTS OF QUANTITATIVE PARAMETERS USING THE FUSION METHOD FOR THE LIVER AND LIVER TUMOR SEGMENTATION ON 3DIRCADB DATASET.

ALL VALUES ARE REPORTED AS MEAN ± STANDARD DEVIATION. BEST SCORES AS MARKED IN BOLD.

Algorithm
Metrics of liver segmentation Metrics of liver tumor segmentation

Dice (%) Precision (%) Recall (%) Jaccard (%) Dice (%) Precision (%) Recall (%) Jaccard (%)

nnU-Net [2] 96.54±1.46 95.61±2.68* 97.53±1.20* 93.34±2.66 73.26±26.26* 83.40±31.78 70.62±20.67* 62.61±25.20*

nnU-Net(ResNet) [2] 96.63±1.41 96.58±2.37 97.24±1.05 93.51±2.57 74.63±22.10 90.98±25.32 64.29±21.63 62.84±20.59
TFVS 96.70±1.15 95.97±2.16 97.37±1.23 93.55±2.40 82.60±7.96 93.74±9.78 74.90±11.07 71.08±11.38

* indicates that the results are statistically different from the nnU-Net results in Table II (Wilcoxon signed-rank tests, p < 0.05).

and coronal axes of 3D images, making it a robust and
reliable solution for 3D biomedical image segmentation. Our
experiments on the Liver dataset and 3Dircadb dataset have
demonstrated the effectiveness of TFVS in accurately segment-
ing 3D biomedical images, particularly in the case of liver and
tumor segmentation.

Our results show that when segmenting images with smaller
tumors, the TFVS method outperforms other state-of-the-
art models. Additionally, our second ablation experiment
highlights the effectiveness of 3D biomedical image seg-
mentation with three-directional information, which enhances
segmentation results by providing more spatial information
on organs and tumors. This shows that better segmentation
results are achieved by incorporating more information from
three orthogonal axes (the axial, sagittal, and coronal axes).
The TFVS model helps address issues caused by boundary
ambiguity and the invasion depth of tumors encountered in
conventional segmentation techniques by utilizing this three-
direction information. Consequently, the TFVS method shows
enhanced segmentation performance and superior generaliza-
tion capability when addressing liver and tumor segmentation
challenges compared to other state-of-the-art methods.

Although the proposed TFVS method offers promising
results, it could be further improved in the following aspects.
For example, the use of three-direction spatial information
could be extended for larger-scale 3D features. In addition,
its performance could be further improved when dealing with
small targets, e.g. by leveraging three-direction inter- and intra-
slice contexts.
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